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THE EFFECT OF THICKNESS ON PITCHING AIRFOILS AT SUPERSONIC SPEEDS 

ABSTRACT 

The effect of thickness on the lift and pitching moment on two 
dimensional pitching airfoils at supersonic speeds is investigated. 
The airfoils considered have arbitrary symmetrical cross sections, and 
the flow is supersonic throughout the flow field. 

The analysis is based on a second order theory similar to the second 
order theory introduced by Busemann and extended by Van Dyke. The lifting 
pressure due to steady pitching is found and this is used to calculate the 
lift due to pitching, CT , and the moment due to pitching, C • *** m~ 
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SYMBOLS 

c airfoil chord 

C„ pressure coefficient     (       es^^c  . 

velocity of sound in air which has been brought to 
rest adiabatically 

d distance from airfoil leading edge to axis of pitch 

f arbitrary function associated with the equation of 
the airfoil surface (see eq» 9) 

g,, g2, g^ functions associated with the form of the first order 
•* potential function 

h,, h2,...h^ functions associated with the form of   the second 
order potential function 

I,, I2 functions associated with the form of the second 
order lifting pressure 

i, k unit vectors 

f at distance small compared to unity 

M Mach number 

q. rate of pitch 

s a function associated with the airfoil surface 

V free stream velocity 

t. t time o 

x, y, z rectangular coordinates 

x , y. z        rectangular coordinates 

a angle of attack 

p       vV-i 



r 

*V*2 

(0 

L 

M' 

CL 

adiabatic exponent 

thickness parameter (see eq. 7) 

characteristic coordinates 

sBcond order potential function 

first order perturbation potential function 

second order perturbation potential function 

auxiliary functions used in finding the second 
order potential function 

velocity vector 

normal force 

pitching moment 

force coefficient 
-(l/2pV*Lcj 1/2 p V^ c 

pitching moment coefficient= /    M 

a/2 P v 

°L - 8 °L 
9/q.c 
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INTRODUCTION 

The development of the linearized theory of supersonic flow l.aa 
permitted a first order evaluation of a number of stability derivatives. 
Second order theories similar to the one introduced by Busemann (ref.l) 
and extended by Van Dyke (ref.2 and 3) offer possibilities of obtaining 
second order evaluations of certain stability derivatives, such as lift 
and moment due to steady Ditching, and lift md momer', iue to constant 
rate of change of angle of attack. The determination of the damping in 
roll (in ref. k)  for certain airfoils is an example of the use of a second 
order theory to obtain stability derivatives. 

In this paper a second order theory is developed for two dimensional 
pitching airfoils at supersonic speeds. This theory yields an expression 
for the lifting pressure due to steady pitching which enables the stability 
derivatives CT (lift due td pitching) and C  (moment due to pitching) to 

n a 
be calculated. The airfoils considered here Tiave arbitrary symmetrical 
cross sections; however, the analysis can easily be extended to include air- 
foils with unsymmetrical cross sections. 

The partial differential equation for airfoils with a steady pitching 
velocity is expressible in a form independent of time. Work by Milton D. 
Van Dyke (ref. 2 and 3) indicates that second order solutions of the 

• partial differential equation of steady supersonic flow can be obtained by 
iterative .methods. The equation considered here is quite similar to, 
though not the same as, the equation of steady supersonic flow* Ve shall 
assume that the second order solution can be obtained by the use of 
iterative methods. 

It will also be assumed that the characteristics are the same for the 
first and the second order solutions (this assumption was made it ref. 2 
and 3). For steady plane flow the second order solution (ref. 2) found by 
using an iterative method based on the preceding assumption yields the 
correct second order pressure of th« Busemann second order theory. Un- 
fortunately, no such justification of this assumption is known to the 
authors for the flow associated with pitching airfoils. 

ANALYSIS 

The Partial Differential Equation:    The partial differential equation 
to be used in the following analysis is a special case of the two dimensional 
time dependent equation for the potential function of a non-viscous compressible 
fluid.    This equation is (see ref. k) 

*2 (*x   x     + *z z  )   -#t*   •**   2*x x     • 2*x *.  *x z**f   §z   z + \oo 00/ O OO OOOOO 0    0 

O O 0 0 

»2 - %   -   [V1) &x * •*, 2 • 2*t>/2] 

This equation is associated with axes fixed in space.    Far the present 



problem it is convenient to express the differential equation in terms 
of a set of axes which are fixed to the airfoil. Since an airfoil with 
a constant rate of pitch can be considered as flying in a circular flight 
path with a constant speed, the axes fixed to the airfoil must rotate with 
respect to the stationary axes with a constant angular velocity q. The 
relations between the two sets of coordinates, which are illustrated in 
fig. 1, are 

x - xQ cos qt • *0 sin qt (a) 

z m v/q „ x    sin qt • ZQ cos qt (b) (2) 

The flow over an airfoil with a constant rate of pitch is steady, thus 
in the new coordinate system the partial derivatives with respect to time 
will be zero in the present problem,.   In the axes attached to the airfoil 
equation (1) is to the second order 

""2 *xx **„ " [M2(Y
 " 1}*X(*xx •*••> * a*2*** x, +M2

 **Z - 

2M2qz § ^ 2H2* A.X* ^ * «*xz ]     / V      (3) 

The Pressure Relations    The time dependerit pressure relation is (from 
raf. T^T~ 

% 

\ o / 

In the axes attached to the airfoil the preceding equation becomes 

cp 4**x*y(f2*x2 A2)~(^Z2A2)+(2 q z#x^2)-(2 ***Z/**JM 

Eqs. (3) and (U) will be used in the following analysis. 

Solution by Iteration:    It will be assumed tha*. eq. (3) can be solved 
by an iteration procedure.    The first order solution is taken as the first 
approximation to the solution of eq. (3).   The first order differential 
equation is obtained by neglecting the second order tterms in eq. (3)j and 
it is given by 

' P2 ?xx * *zz " ° (« 
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Fig. I - Stationary and moving axes. 



It is assumed that the second approximation can be found by 
substituting the first order solution into the right side of eq. 
(3) and solving the resulting nonhomogeneous aquation, which from 
eq. (3) and {$) is 

'xz* -P2 *xx+ ^zz ' [«2(Y "l^x^a* *zz> * 2 ** « x *i 

l^q ^ - 2M2 q 2 tf^ • 2M2 ^ ^ • 

2M2 0y ^ • 2M2 JT, *„] A (6) 

The solution, of eq. (6) will be referred to as the second order 
solution. 

glimina.tion of Terms;    It is helpful to investigate the type 
of solution obtained from eq.  (6).   The first order equation will be 
of the form 

0 - a g1 (x,z) • q g2(x,z) • €g3(x,z) 

where € is a thickness parameter and where a, q, and iare small compared 
to unity. It follows from the preceding expression and eq. (6) that the 
second order solution will be of the form 

^- a    hjfoz) + q2h2(x,z) + *2lu(x,i) • aqh^XjZ)* 

a«h-(x,z) • q*hg(x,z) 

The terms a^Cxjz), €nxJx,z) ^ and o e h^(x,z)     are 

independent of the rate of pitch; thus they do not contribute to the 
lifting pressure due to the pitching motion of the airfoil •   Since tais 
paper is concerned only with the lifting pressure due to the pitching, 
all terms of the forms   c h(x,z)      ,   <Ti(x,z) , and o«h(x,z) 
can be neglected in the ensuing analysis. 

The following argument shows that q   h2 (x, z) and aqh^(x,z) 

do not contribute to the lifting pressure^   The thickness parameter, £, 
is not present; therefore, the airfoil can be considered a flat plate 
insofar as these terms are concerned.   If the potential of the flow on 
the upper surface of a flat plate is expressed as 

£(a, q) - cgx • qg2    • oT^ • aqhj* qTig 

the potential on the lower surface is given by 

$(- a, - q) - - agx - qg2 •• aT^ • aqb^ • q 1^ 

the potential difference is 

A$ • 2 o. g. • 2<22 

* The terms a^b-U, z), and aelv(x, z) are associated with steady two 
dimensional supersonic flow ana can be found by use of eq. (U6) in 
ref. (2) 
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Since for the flat plate the pressure difference between the uppor and 
lover surface can be found directly from the potential difference the 
terns a q hi and q h_ do not contribute to the lifting pressure* 

The remaining tern q*h^ (x ,z) will be found by use of eq* (6), 
neglecting all expressiona multiplied as a«, q , €*, and aq, 

A further consideration of the form of the solution indicates that 
the second order lifting pressure is linear in the thickness parameter. 
This can be established by considering a first order solution of the 
form 

0 -  q g^Xjt)  • €1 g^   (x,   z)  •      Cgg^     (x,z) 

The second order lifting pressure will be of the form 

AC    -[li q x/(p V)2* q€1I1(x) + q*2 I2 (x) 

This equation is linear inf. and^Lj thus the lifting pressure for 
various known thickness distributions can be added to obtain the lifting 
pressure for new thickness distributions*   For the two dimensional airfoil 
this is not of much value for determining analytical solutions, since we 
shall determine the solution for an arbitrary thickness distribution* 
This linearity is also true, however, for three dimensional airfoils* and 
for these it should prove quite useful* 

TVwnifrn-y Cjffldjl&flBj.*    Physical considerations require that the flow be 
tangent to the surface of the airfoil, and that all velocity perturbations 
vanish upstream of the airfoil*    These boundary conditions may be expressed 
mathematically as; 

$ (x, z) • 0 1 upstream of the airfollfe 

ir (x, z) - 0 J leading edge Mach sheet 

and 

co Sja - 0 

where s(x,z) - 0 is the equation of the surface of the airfoil* 

The equation of t he surface or the airfoil may also be expressed as 

z tr(x) 

Thus 
^s - - ice^x • k 

Since the velocity, co, can be written as 

o> - i(V - sq • $fx • p%) • K(qx • ^ • f%) 

it follows that the boundary condition on the body surface is 
-(V -zq • 0X *fx) €fx • (IT, •£ • qx - 0 

11 



Thus the boundary conditions for the first order solution are 
0(x,z) m  ° upstream of the airfoil's leading edge Mach sheet, and 

</.|    - - qx* V€f (8) 

The boundary conditions for the second order solution are 
yr(x,z) - 0   upstream of the airfoils leading edge Mach- sheet,  and 

if    I • 0   *        ef     - *f ft       1 
*   !•-•     'U   * '"L-O (9) 

For the airfoils considered here the first order velocity components 
are discontinuous across the Kach sheet from the leading edge. 

To evaluate the effect on the second order solution of the dis-   * 
continuities in the first order velocity components, we shall assume the 
Mach sheet from the leading edge to have a small thickness.   Within this 
Mach sheet the first order velocity components will be made continuous 
so that the discontinuities through it are replaced by continuous 
functions.    This process is illustrated in fig. (2) for the velocity 
component in the free stream direction.    The effect of the -di-eeontint&tiea 
on the f°cond order solution will be found by obtaining the second order 
solution within the Mach sheet and then letting the thickness approach 
zero.    This is the same procedure followed in ref. (U) for rolling airfoils. 

Only the Mach sheet above the airfoil will be considered since the Mach 
sheets above and below the airfoil are of the same form.    Since they depend 
only on the initial slope of the airfoil, the discontinuities in the first 
order velocity components through the leading edge Mach sheet above the 
airfoil will be the same as those through the Mach sheet above a flat 
pitching airfoil with a constant angle of attack of the amount    - €• 

The first order potential function for the flow over the upper surface 
of a flat pitching airfoil at an angle of attack - € is given by 

0 - [q(x - pz)2/2 ~ V£ (x - pz) - qd2/2 - V#d]  / p (10) 

where the airfoil is approximately in the z • 0 plane. 

The discontinuities in the first order velocity components through 
the leading edge Mach sheet above the airfoil are from eq. (10). 

AJC -qd/p - V€/P 
1 

A0Z - qd    + v« 

It will be assuned that the Mach sheet has a «nali  thickness (see fig.2-b). 
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Leading Edge 
Macti Sheet 

«-x 7ZZZ&  -• 

x»-pz*J 

a.   Leading Edge 'Mach Sheet       b.  Leading Edge Mach Sheet 
With Zero Thickness With Assumed Thickness 

•. 

— x 
x*pz 

c. Discontinuity In +, Across 
Leading  Edge Mach Sheet 
Along The Line   Z«Z, 

•« 

— x 
t'&Z, X=0Z,*2 

d.   Plot  Of •, Across  Leading 
Edge Mach Sheet With 
Assumed Thickness Along 
The Line  Z*Z, 

Fig. 2-An illustration of removing the discontinuity in «) 

across the leading edge Mach sheet by assuming 

the Mach sheet to have thickness. 
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The velocity components within the sheet, will be defined as 

(fx- -(qd*7«)(x-0»*4«.f)/ ( f p) 

Jfz - (qd +V«) (x-pe+d+jT)/ f (n) 

where f is the thickness of the Mach sheet in the x direction. Note that 
within the Mach sheet 

- B2 0  • C/     - 0 r     ''xX i *ZZ 

and that the velocity components are continuous functions in the neighbor- 
hood of it* 

From eq* (6) and (U) the differential equation wiUhin the Mach sheet 
is 

-e t^% zz 

j> M2 l«p »/(pV)]» [M2<1« (I - pa • d • jf) / if] ''2' 

It is convenient to express eq. (12) in terms of variables which lie 
along the characteristics. Let 

<J« x - B z 

7j- x • B z 

In terms of the new coordinates (<£, rj ) eq. (12) becomes 

tfy' -(J^CY * 1) *«(<?• d • f)/(U p^ f2)] -[M2**^ d • jDAUfp2)] - 
[M2 q«   (^* 7) /(U p2jT)J -[M2q« (7-4)AUpU f)] 

This equation can be Integrated to yield 

f- - [2dMU(Y • 1) *«/ (U PU ?2)]Jjftf+ d • f) d$ d^ - 

[A* AU p2 ?)]ff(t+ d • f) d4d7- [M2 q«AU p? 

[M2q€/(UpUjT)]j[]f(7-^) d^d^ 

G+TjMdtf 

The potential on the downstream side of the Mach sheet can be found by 
evaluating the integrals in the preceding equation and taking the limit as 
(—> 0. 

The value of the discontinuity in the second order jpotential function 
across the fading edge Mach sheet is (from the above equation)* 

Bz- d 
- - M2 q€ f'(-d)   [M2X • (2 • rAd]   pz/(2pU) (13) 

Ui 



Solution of the Partial Differential Equation;    The part of the 
second order potential function which yields the lifting pressure 
due to the pitching moticu will now be determined.    The determinations 
of the potentials over the upper and lower surfaces are similar} there- 
fore, only the flow over the upper surface will be considered'in detail. 

The first order solution is 

tf - [q (x - pz)2/(2 P)] - [?«f(x - pz)/ p]- qd2/(2 p) (U.) 

It follows from eq, (6) and (lU) that the second order potential 
function must satisfy the nonhomogeneous equation 

(15) 
" PVxx* *ZB   - ^ (f,(x " Pz) " [^Y • D/^Jf* " P*)f\x-p*> 

f'(x - pz)]* 2 (px • z) f" (x - pz) / p] 

where the primes d«uote derivatives with respect to (x - pz), and the 
a , aq, a 6 , and   q     terms have been neglected*   By inspection a partic- 
ular solution of eq.  (15) is found to be 

fx - M2 qc j- [z f(x -p z)/(2 P)J+[M2(T • i)s(x -pzJf'Cx-pzJAzp3)^ 

(16) 

+ [-2 x pz f'(x - pz) • (p2-l)z2f'(x-pz)*(p2-l)zf(x-pz)/p] /(2p2)| 

The solution of eq,  (15),^", consists of a particular integral,ijr f 
plus a complementary function, |K> which must be found so that  Tfr 
satisfies the boundary conditions given by eq, (9) and (lU).    Hence ifT^ 
must satisfy • 

and the following boundary conditions: , 

% -*\ "*i *   x - pz - d      |x-pz-d 

9*2^U-0-a^zlz-0   -B^1^Z 

• [W(??3)] [^ Y •(pU*2p2-l)xf,(x)^L*p2-2pi*)f(xjl(l8) 

By inspection the complementary function is found to be 

% - [q«/(2pU)]{[KU Y - (PU *2p2- 1)J (x - pz)f(x-pz) • 

x - pz - d 

z - 0 

(17) 

(-M\.* 3PU* P2 - 2)J°X"PZ f(\) 
" -d 

15 

•} 
(19) 



The desired solution is 

^"*L **2 " [l^ /(2PU)J {*V Y*l-P?)M»f'   (x - M) - 
M2(M2

Y - 2) p2 »2 f(x - pz) +[-M2 pz • d* Y<* - P*) - 

(pU + 2 p2- 1) (x - pz)] f(x - pz) • [V1 Y + 3 PU*P2- ^T        f(X)dxl 

Eq'^ (20) is the part of the second order potential function which 
yields the entire second order contribution to the lifting pressure due to 
pitching* 

Lifting Rressurei The lifting pressure distribution can be expressed 
as 

C  - - C 
P     P upper pl lower 

surface surface 

From eq. (h)  and (20) it follows that for symmetrical airfoils the lifting 
pressure distribution is 

&Cp - - [Uq/(pv)J[x •^/(2p
3)j [(A • pU-2p2> l)xf,(x)-M2f(x)|l(21) 

Fig. (3) presents the lifting pressure distribution on a ten per cent 
thick wedge pitching about the c/2 point for various Mach numbers* 

Fig, (U) presents the pressure distribution on a ten per cent wedge at 
Hach number 1.5 for various positions of the axis of pitch. 

Fig. (5) presents the lifting pressure distribution on a five per cent 
thick airfoil with a parabolic cross section pitching about the c/2 point 
for various Mach numbers. * 

Fig. (6) presents the lifting pressure distribution on a five per 
cent thick airfoil with a parabolic cross section at Mach number 1.5 for 
various positions of the axis of pitch. 

Stability Derivatives; The effect of thickness on the lift and 
moment, C. and C , due to steady pitching can be found by use of eq. (li)» 

The stability derivatives CT and C  can be expressed as 
i<_    m_ , 

„c-d 
dx (^  - [aC^jqcA^jq-*) - [l/{^2/(2vlj^  ACp 

»q • Mf»c/(2v)}lv • H^i/fd xAc» <* 
16 
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M«l.5 

M-2.0 

M-2.5 

56 
Percent Of Chord 

Fig. 3- The lifting pressure distribution on a ten percent thick 
wedge pitching about the c/2 point for various Mach 
numbers. 
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Fig. 4    The lifting pressure distribution on o ten percent thick 
wedge at Mach number 1.5 for various positions of 
the axis of pitch. 
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Fig. 5    The lifting pressure distribution on a five percent thick 
airfoil with parabolic cross section pitching about the c/2 
point for Mach numbers 1.5 and  2.5 . 
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Fig 6 The lifting pressure distribution on a five percent thick 
airfoil with parabolic cross section at Mach number 1.5 
for various positions of the axis of pitch. 
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*e-d . . (22) 

Prom the preceding relations and eq. (21) the C. and the C  of an 
airfoil are q       aq 

C^   - Bd/(pc) - U/p -[fiC/^jfP1 Y •(p2-l)2][(l-d/c)/c] f^ - 

[h r *(p
2-D2 • M2] f^ [f (cj )/c2J d* j 

and     CB - - [o/(3p)j [l - 3 d/c • 3 d2/c2] - 

(U/p^tWV •(p2-!)2] [(l-d/c)2/c] fn - (23) 

[2^ y • 2(p2 . I)2 • M2^ [<*f(<£)/c^] d*} 

Eq. (23) indicates that the effect of thickness on the>£  is aero for an 
airfoil pitching about the c/2 point with a thickness \q/distributian 
which is chord-wise symmetrical with respect to the mid-chord point* 

fig. 7 throuph 10 present the variation of the CT for a ten f4r cent 
thick wedge and a fire per cent parabolic airfoil wit hi Nach number! and the 
position of the axis of pitch* Pig* 7 and 9 indicate that for d • 0 the 
thickness decreases the C. of » wedge airfoil and Owreases the CL for 

a parabolic airfoil,    * * 

Fig• 11 through lU present the variation of the C  for a ten per cent 
thick wedge and a five per cent parabolic airfoil with\q/ Mach -nuaber and 
the position of the axis of pitch. Fig* U and 13 indicate that for d - 0 
the thickness decreases the C  far a wedge airfoil and increases the C 

far a parabolic airfoil.    ** * 

CONCLUDING REMARKS 

The airfoils considered in tlds paper have symmetrical thickness 
distributions. But since the flow over the upper and lower surfaces of 
the airfoils treated here are independent of each other, the aerodynamic 
properties due to pitching of airfoils with unsymmetrical thickness 
distributions can easily be determined from the results obtained here* 

The limitations of the Busemann second order theory have been 
investigated (see ref. 5) Since the theory contained in the present paper s 
is closely associated with the Busemann second order theory* it seems likely 
that the results- presented herein have similar limitations* 

J0HM..C. MAHT1H   . 

N&T^AN OBRBSR 
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Fig 7   The   variation of the C|_q of a  ten percent thick wedge with 
Mach number for various positions of the axis of pitch. 

22 



-2 

-4 

-6 

-8 

-10 

-12 

-14 

I C  A     ,v 

 1   Linear T 
1 

leory 

/     t 
/    / 
/   / 
/ '     y 

2nd   Ord sr Theory 
/ *  X 

> 

'/ / '/  / s X  J 

* 

• 
• <x > 

// 
// 

'/ 

M»2 

s s           > 

5  X 

X           *> 
'       // 

// 
/ / 

/ / 

/ 
/ 

/ / 

/ 
/   ; 

/    / 
/   / 

/    / 

M«l.! >  / 

-I 

4 
Fig 8 The variation of the Ci_q of a ten percent thick wedge 

with the location of the axis of pitch for Mach numbers 
L5 and  2.5. 

L 
23 



Jk •» 

\     X 
N       X s      X 

-*-20 -=czXUU2IIX2^ 

X 

m               c                * 
1 

 Lirteor Theory 
•J V 

2i id   Order Theory 

o 
 d*c 

c 

1 

k«*l»                                                "***•« 

* ~- —^T^—' 
~*~ ——«. 

1 

d.§ 

r*         r\ C,        U 

— 1 

— ? 

d=0 -— 
---""""' 

-3 

— 4 

>— ^ 

/ 
/ 

t 

1.5 

Fig  9. 

E.O 
M 

2.5 3.0 

The  variation  of the C|_q  of a  five percent thick parabolic 
airfoil   with  Mach  number for various positions of the axis 
of pitch. 

24 



V 
-2 

-4 

-8 

-8 

-10 

-12 

,<ZZZZZZZZZZZZZZZ2>(1IQ 
\—.— C 4 
 Linear Theory 

2nc   Order Thiory 
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Fig II    The variation   A the Cmq of a ten  percent thick wedge 
airfoil with  Mach number for various positions of  the 
axis  of pitch. 
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Fig   12    The variation of the Cmq of a ten percent thick wedge 
airfoil with the location of the axis of pitch for Mach 
numbers  1.5 and  2.5. 
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Fig. 13.   The  variation  of the Cmq of a five percent thick parabolic 
airfoil with Moch number for various positions of the axis 
of pitch. 
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FIG. 14.   The voriotion of the Cmq of a five percent thick parabolic 
airfoil   with the location of the axis of pitch for Mach 
numbers   1.5 and  2.5. 
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